首页> 外文OA文献 >Computing Invariant Manifolds and Connecting Orbits in the Circular Restricted Three Body Problem
【2h】

Computing Invariant Manifolds and Connecting Orbits in the Circular Restricted Three Body Problem

机译:计算不变流形与圆形连接轨道   受限制的三体问题

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

We demonstrate the remarkable effectiveness of boundary value formulationscoupled to numerical continuation for the computation of stable and unstablemanifolds in systems of ordinary differential equations. Specifically, weconsider the Circular Restricted Three-Body Problem (CR3BP), which models themotion of a satellite in an Earth- Moon-like system. The CR3BP has manywell-known families of periodic orbits, such as the planar Lyapunov orbits andthe non-planar Vertical and Halo orbits. We compute the unstable manifolds ofselected Vertical and Halo orbits, which in several cases leads to thedetection of heteroclinic connections from such a periodic orbit to invarianttori. Subsequent continuation of these connecting orbits with a suitable endpoint condition and allowing the energy level to vary, leads to the furtherdetection of apparent homoclinic connections from the base periodic orbit toitself, or the detection of heteroclinic connections from the base periodicorbit to other periodic orbits. Some of these connecting orbits could be ofpotential interest in space-mission design.
机译:我们证明了将常微分方程组中的稳定和不稳定流形计算与数值连续性耦合的边值公式的显着有效性。具体而言,我们考虑了圆形受限三体问题(CR3BP),该问题模拟了类地球月球系统中卫星的运动。 CR3BP具有许多众所周知的周期性轨道族,例如平面Lyapunov轨道和非平面Vertical和Halo轨道。我们计算了选定的垂直和晕轮轨道的不稳定流形,这在某些情况下会导致检测到从此类周期性轨道到不变定律的异斜连接。这些连接轨道随后在合适的端点条件下继续延伸并允许能级发生变化,导致进一步检测到从基本周期轨道到其自身的表观同斜连接,或检测到从基本周期轨道到其他周期轨道的异斜连接。这些连接轨道中的某些可能在空间飞行任务设计中引起人们的兴趣。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号